
Profiling and
Performance
Basics
Mikel Solabarrieta – 2025-06-24

hi@mikel.xyz
@mikel@cyberplace.social
mikelsr
mikelsr

Sources
https://github.com/mikelsr/perfbasics

About me
Deusto

IEIA + II

Barcelona
Supercomputing
Center

Masters –
Research on High
Performance
Computing

DeustoTech

MORElab –
IoT

Predictable
Parallel
Computing –
Hardware
Acceleration

UPC StreamSets /
IBM

Real-time
ETL tools

Openfort

Transaction
infrastructure

Wetware

Distributed systems platform

Profiling is…
Analyzing the execution of a program to understand its runtime behavior and
performance characteristics.

There are multiple types of profiling, depending on what is being analyzed:

● CPU
● Memory
● IO

Profiling a program affects its behaviour!

Benchmarking is…
Measuring and evaluating the performance of software.

Benchmarking: big picture. Time it takes to run the program, total memory
usage…

Profiling: detailed view. Time it takes for each function to run, calls of each
function…

Performance is important because it…
Lets you do more with less:

Attend more requests, run more services or save hardware costs.

Improves power efficiency:
Every instruction a computer executes costs energy.

Provides a better user experience:
By making things happen and respond faster.

Opens new possibilities:
A slower program might have more limited functionality.

Performance isn’t everything!

Most of the times, correctness, readability, maintainability… should come before
performance.

Other people will likely need to work with your code in the future.

You will likely need to work with your code in the future.

Evaluate the priorities of each project and balance them accordingly.

Performance isn’t everything!

https://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html

But it is important.

https://discord.com/blog/why-discord-is-switching-from-go-to-rust

Purple (spiky) - Go ; Blue (plane) Rust

The performance improvement iceberg

And so many more…

Algorithms Data Structures

Caching

Concurrency Parallelism

Profiling

Compiler Directives

Libraries

RuntimesData Locality

Synchronization
Mechanisms

Inter-Process
Communication

SIMD

Hardware Acceleration

Things we’ll talk about
Basic tips

Big O

Memory layout and hierarchy

Concurrency and parallelism

Hardware acceleration

Garbage Collection

Data locality

Profiling

Basic Tips
1. Don’t reinvent the wheel

Someone has likely faced this problem before, and created an optimized
way of solving it. The best example are native types and methods.

2. Re-use
Existing objects instead of creating new objects

3. Cache when possible (re-use!)
@lru_cache, network requests…

4. Moving things around is slow
Over the network, from one process to another, from one place in memory
to another, from memory to cache…

5. Pre-allocate when possible
So things are moved around less.

6. Learn data structures.
Guaranteed to speed up and improve almost any program you write.

7. Idle time is wasted time
Sending network requests, waiting for events… can free the CPU to do
other work.

Basic Tips
8. Profile

You know what your code does, now learn how it does it. Use what you
learn to improve upon it.

Less Basic Tips
1. Remember your software runs on hardware

Each hardware has its own characteristics. There are also some general
ones: cache is faster than memory, which is faster than storage. Division is
slower than multiplication. Networks can be unreliable…

2. Learn your language
Each programming language has its own best practices. E.g. working with
pointers might be faster in C, but slower in Go.

3. Reflection is expensive
Knowing things at compile time is faster.

4. Concurrency and parallelism
Write code that can do more than one thing at once.

5. Hardware acceleration
CPUs are not the only ones capable of running software! You likely have
GPUs, TPUs, FPGAs..

6. Heap escape analysis
Stack is faster than heap, and some languages let you see when variables
escape the stack and go to the heap.

Big O

Source:
https://www.freecodecamp.org/news/all-you-need-to-know-about-big-o-notat
ion-to-crack-your-next-coding-interview-9d575e7eec4/

Big O: Learn algorithms and data structures
Useful in practically any situation. Simple example, check if a set of numbers contains
a value.

import bisect

LEN = 100_000_000
ITEMS = [i for i in range(LEN)]
LOOKUPS = [421, 540_354, 29_233_421, 99_999_999, 1, 50_000_000, 63_312_512]
LIST = [i for i in range(LEN)]
SET = {i for i in range(LEN)}

def search_list():
 for item in LOOKUPS:
 assert item in LIST

def search_sorted_list():
 for item in LOOKUPS:
 i = bisect.bisect_left(LIST, item)
 assert i < LEN and LIST[i] == item

def search_set():
 for item in LOOKUPS:
 assert item in SET

Big O

Pre-allocate
def with_initial_size(n):
 l = [0] * n
 for i in range(n):
 l[i] = i
 return l

def without_initial_size(n):
 l = []
 for i in range(n):
 l.append(i)
 return l

Pre-allocate

Pre-allocate

def without_initial_size(n):
 l = [i for i in range(n)]
 return l

Garbage Collection
Many garbage-collected languages allow some control over when and how the
garbage collector runs. But does have to run.

import gc
gc.enable()
gc.disable()
gc.collect()

import "runtime"

runtime.GC()

System.gc()

https://sematext.com/java-garbage-collection-tuning/

Garbage Collection
It can have a great impact on your application performance:

How We Saved 70K Cores Across 30 Mission-Critical Services (Large-Scale,
Semi-Automated Go GC Tuning @Uber)
https://www.uber.com/en-ES/blog/how-we-saved-70k-cores-across-30-mission-critic
al-services/

Careful!
Garbage Collectors, interpreters, compilers… are usually greatly designed and know
what they are doing.

GC example
import gc

def make_objects():
 objects = []
 for _ in range(200_000_000):
 objects.append(object())
 return objects

def toggle_gc():
 try:
 gc.disable()
 finally:
 gc.enable()

def with_gc():
 return make_objects()

def without_gc():
 try:
 gc.disable()
 return make_objects()
 finally:
 gc.enable()

GC example

Memory
Layout and
Hierarchy

CPU

Memory

Core

vCore vCore

L2

L3

L1 L1

C
o
r
e

C
o
r
e

C
o
r
e

Concurrency vs Parallelism

Source: ByteByteGo https://www.youtube.com/watch?v=RlM9AfWf1WU

Concurrency vs Parallelism

Concurrency: take advantage of your IDLE time

Parallelism: take advantage of your multiple cores

CPUs are good at everything, bad at nothing.

Other processor types are great at something, bad at everything.

For example, a CPU usually has 10s of simultaneous threads.

Do you know how many a GPU has?

Hardware Acceleration

Data Locality

Source: https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Data Locality

def iterate_by_row():
 total = 0
 size = len(MATRIX)
 for col in range(size):
 for row in range(size):
 total += MATRIX[col][row]
 return total

def iterate_by_column():
 total = 0
 size = len(MATRIX)
 for row in range(size):
 for col in range(size):
 total += MATRIX[col][row]
 return total

MATRIX = [[randint(0, 100) for _ in range(_ROWS)] for _ in range(_COLS)]

Data Locality
Matrix: 3000x3000 items. Each item 24 bytes (Python is weird). 216MB.

Data Locality
Matrix: 10000x10000 items. 2.4GB.

What Other Ways Can You Think Of?

What Other Ways Can You Think Of?
● Parallelize

● Use external libraries

● Use another interpreter

(pypy.org, great performance in nested loops)

● …

Introducing Numpy

def iterate_by_row():
 total = 0
 for col in range(MATRIX.shape[0]):
 for row in range(MATRIX.shape[1]):
 total += MATRIX[col, row]
 return total

def iterate_by_column():
 total = 0
 for row in range(MATRIX.shape[1]):
 for col in range(MATRIX.shape[0]):
 total += MATRIX[col, row]
 return total

MATRIX = np.random.randint(0, 101, size=(_COLS, _ROWS))

Surprisingly slower!

Choose the Right Tool and Method

native python
def matrix_sum():
 return sum(sum(row) for row in MATRIX)

numpy
def matrix_sum():
 return np.sum(MATRIX)

By Row vs Native Sum vs Numpy Sum

Data Locality
Think about how your data is structure in memory, and take advantage of things that are
close to each other.

class MyClass:
 def __init__(self):
 self.a = 100
 self.b = 100
 self.c = 100
 self.d = 100
 ...

objects = [MyClass(), MyClass(), MyClass()]

In memory:
objects = [a, b, c, d, ..., a, b, c, d, ..., a, b, c, d, ...]

Data Locality
objects = [MyClass() for _ in range(1_000_000)]

def inc():

 for obj in objects:

 obj.a += 1

 obj.b += 1

 obj.c += 1

Data Locality
def per_object():
 for obj in objects:
 for attr in ('a', 'b', 'c', 'd', ...):
 setattr(obj, attr, getattr(obj, attr) + 1)

def per_attr():
 for attr in ('a', 'b', 'c', 'd', ...):
 for obj in objects:
 setattr(obj, attr, getattr(obj, attr) + 1)

Data Locality
def per_object():
 for obj in objects:
 for attr in ('a', 'b', 'c', 'd', ...):
 setattr(obj, attr, getattr(obj, attr) + 1)

def per_attr():
 for attr in ('a', 'b', 'c', 'd', ...):
 for obj in objects:
 setattr(obj, attr, getattr(obj, attr) + 1)

Profiling demo

Lab
1. Download https://github.com/mikelsr/perfbasics
2. Install the Python dependencies from requirements.txt
3. Take a look at lab/wordcount.txt
4. Before starting to improve it:

a. Profile it: to get an idea of what to improve first.
b. Benchmark it: so you can measure your improvements.

5. Comment and share your progress! Discussion is good.

https://github.com/mikelsr/perfbasics

Thanks!

You can reach me through:
hi@mikel.xyz
@mikel@cyberplace.social
mikelsr
mikelsr

